23 research outputs found

    Modulation of GSK-3 as a Therapeutic Strategy on Tau Pathologies

    Get PDF
    Glycogen synthase kinase-3 (GSK-3) is ubiquitously expressed and unusually active in resting, non-stimulated cells. In mammals, at least three proteins (α, β1, and β2), generated from two different genes, gsk-3α and gsk-3β, are widely expressed at both the RNA and protein levels although some tissues show preferential expression of some of the three proteins. Control of GSK-3 activity occurs by complex mechanisms that depend on specific signaling pathways, often controlling the inhibition of the kinase activity. GSK-3 appears to integrate different signaling pathways from a wide selection of cellular stimuli. The unique position of GSK-3 in modulating the function of a diverse series of proteins and its association with a wide variety of human disorders has attracted significant attention as a therapeutic target and as a means to understand the molecular basis of brain disorders. Different neurodegenerative diseases including frontotemporal dementia, progressive supranuclear palsy, and Alzheimer’s disease, present prominent tau pathology such as tau hyperphosphorylation and aggregation and are collectively referred to as tauopathies. GSK-3 has also been associated to different neuropsychiatric disorders, like schizophrenia and bipolar disorder. GSK-3β is the major kinase to phosphorylate tau both in vitro and in vivo and has been proposed as a target for therapeutic intervention. The first therapeutic strategy to modulate GSK-3 activity was the direct inhibition of its kinase activity. This review will focus on the signaling pathways involved in the control of GSK-3 activity and its pathological deregulation. We will highlight different alternatives of GSK-3 modulation including the direct pharmacological inhibition as compared to the modulation by upstream regulators

    Specific Roles of Akt iso Forms in Apoptosis and Axon Growth Regulation in Neurons

    Get PDF
    Akt is a member of the AGC kinase family and consists of three isoforms. As one of the major regulators of the class I PI3 kinase pathway, it has a key role in the control of cell metabolism, growth, and survival. Although it has been extensively studied in the nervous system, we have only a faint knowledge of the specific role of each isoform in differentiated neurons. Here, we have used both cortical and hippocampal neuronal cultures to analyse their function. We characterized the expression and function of Akt isoforms, and some of their substrates along different stages of neuronal development using a specific shRNA approach to elucidate the involvement of each isoform in neuron viability, axon development, and cell signalling. Our results suggest that three Akt isoforms show substantial compensation in many processes. However, the disruption of Akt2 and Akt3 significantly reduced neuron viability and axon length. These changes correlated with a tendency to increase in active caspase 3 and a decrease in the phosphorylation of some elements of the mTORC1 pathway. Indeed, the decrease of Akt2 and more evident the inhibition of Akt3 reduced the expression and phosphorylation of S6. All these data indicate that Akt2 and Akt3 specifically regulate some aspects of apoptosis and cell growth in cultured neurons and may contribute to the understanding of mechanisms of neuron death and pathologies that show deregulated growth

    Neuroprotection in Synaptic Signalling During Neurological Disorders

    No full text
    Some of the most devastating and costly conditions in the world arise from neurological andneurodegenerative disorders. About one-third of the world's population suffers from neurologicaldiseases, including Parkinson's (PD) and Alzheimer's (AD) diseases, multiple sclerosis, epilepsy, spinal cord injury, and others. Symptoms may show early in childhood or substantially delayedin adolescence or young adulthood. Animal models are powerful tools aiding in understandingneurological pathophysiology towards developing neuroprotective strategies.So far, there are no well-established treatments for brain repair. Hence, neuroprotectionbecomes imperative. Synapses pose major targets for finding new neuroprotective agents.The aimof this topic is to share research addressing neuroprotective strategies for the brain, theirpossible pathways, and the use of pharmacological analogues. Four reviews are about hypoxia. Twochapters address themolecular bases of cognitive impairment in AD. Biochemical and physiologicalaspects of neuroprotective agents focusing on synaptic modifications, neuroprotection followingperinatal asphyxia, and pharmacological- and genetic-targeting strategies for Alzheimer's and Parkinson's diseases are reviewed.Fil: Otero losada, Matilde Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; Argentina. Universidad Abierta Interamericana. Secretaría de Investigación. Centro de Altos Estudios En Ciencias Humanas y de la Salud - Sede Buenos Aires; ArgentinaFil: Wandosell, Francisco G.. Universidad Autónoma de Madrid; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Capani, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; Argentin

    Neuronal and glial purinergic receptors functions in neuron development and brain disease.

    Get PDF
    Brain development requires the interaction of complex signalling pathways, involving different cell types and molecules. For a long time, most attention has focused on neurons in a neuronocentric conceptualization of CNS development, these cells fulfilling an intrinsic programme that establishes the brain’s morphology and function. By contrast, glia have mainly been studied as support cells, offering guidance or as the cells that react to brain injury. However, new evidence is appearing that demonstrates a more fundamental role of glial cells in the control of different aspects of neuronal development and function, events in which the influence of neurons is at best weak. Moreover, it is becoming clear that the function and organization of the nervous system depends heavily on reciprocal neuron-glia interactions. During development, neurons are often generated far from their final destination and while intrinsic mechanisms are responsible for neuronal migration and growth, they need support and regulatory influences from glial cells in order to migrate correctly. Similarly, the axons emitted by neurons often have to reach faraway targets and in this sense, glia help define the way that axons grow. Moreover, oligodendrocytes and Schwann cells ultimately envelop axons, contributing to the generation of Nodes of Ranvier. Finally, recent publications show that astrocytes contribute to the modulation of synaptic transmission. In this sense, purinergic receptors are expressed widely by glial cells and neurons, and recent evidence points to multiple roles of purines and purinergic receptors in neuronal development and function, from neurogenesis to axon growth and functional axonal maturation, as well as in pathological conditions in the brain. This review will focus on the role of glial and neuronal secreted purines, and on the purinergic receptors, fundamentally in the control of neuronal development and function, as well as in diseases of the nervous system

    p120 catenin/αN-catenin are molecular targets in the neuroprotection and neuronal plasticity mediated by atorvastatin after focal cerebral ischemia

    No full text
    Atorvastatin (ATV), a 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, exerts beneficial effects on stroke through several pleiotropic mechanisms. However, its role following cerebral ischemia is not completely understood yet. We evaluated the effect of ATV treatment on the synaptic adhesion proteins after a transient middle cerebral artery occlusion (t-MCAO) model in rats. Ischemic male Wistar rats were treated with 10 mg/kg ATV. The first dose was 6 hr after reperfusion, then every 24 hr for 3days. Our findings showed that ATV treatment produced an increase in pAkt ser473 and a decrease in pMAPK 44/42 protein levels 12 and 24 hr postischemia in the cerebral cortex and the hippocampus. However, p120 catenin and αN-catenin became drastically increased throughout the temporal course of postischemia treatment (12–72 hr), mainly in the hippocampus. Neurological recovery was observed at 48 and 72 hr, supported by a significant reduction of infarct volume, neuronal loss, and glial hyperreactivity after 72 hr of postischemia treatment with ATV. ATV treatment also up-regulated the association of p120ctn, αN-catenin to PSD-95, accompanied by a reduction of RhoA activation and the recovery of MAP2 immunoreactivity, these being significantly affected by the focal cerebral ischemia. Our findings suggested that p120ctn and αN-catenin synaptic adhesion proteins are crucial molecular targets in ATV-mediated neuroprotection and neuronal plasticity after focal cerebral ischemia.Contract grant sponsor: Colciencias; Contract grant number: 11150416372; Contract grant number: 111545921467; Contract grant sponsor: CODI, University of Antioquia, Colombia; Contract grant sponsor: ALFA Project; Contract grant number: II0322FA-FCD-FI-FC; Contract grant sponsor: CIBERNED (an ISCIII initiative; to F.W.J.); Contract grant sponsor: DGCYT National Plan, SAF2006-12782-C03- 01 (to F.W.J.); Contract grant sponsor: ‘‘Fundacio´n Areces’’ (to F.W.J.).Peer reviewe

    Role of mTORC1 Controlling Proteostasis after Brain Ischemia

    No full text
    Intense efforts are being undertaken to understand the pathophysiological mechanisms triggered after brain ischemia and to develop effective pharmacological treatments. However, the underlying molecular mechanisms are complex and not completely understood. One of the main problems is the fact that the ischemic damage is time-dependent and ranges from negligible to massive, involving different cell types such as neurons, astrocytes, microglia, endothelial cells, and some blood-derived cells (neutrophils, lymphocytes, etc.). Thus, approaching such a complicated cellular response generates a more complex combination of molecular mechanisms, in which cell death, cellular damage, stress and repair are intermixed. For this reason, animal and cellular model systems are needed in order to dissect and clarify which molecular mechanisms have to be promoted and/or blocked. Brain ischemia may be analyzed from two different perspectives: that of oxygen deprivation (hypoxic damage per se) and that of deprivation of glucose/serum factors. For investigations of ischemic stroke, middle cerebral artery occlusion (MCAO) is the preferred in vivo model, and uses two different approaches: transient (tMCAO), where reperfusion is permitted; or permanent (pMCAO). As a complement to this model, many laboratories expose different primary cortical neuron or neuronal cell lines to oxygen-glucose deprivation (OGD). This ex vivo model permits the analysis of the impact of hypoxic damage and the specific response of different cell types implicated in vivo, such as neurons, glia or endothelial cells. Using in vivo and neuronal OGD models, it was recently established that mTORC1 (mammalian Target of Rapamycin Complex-1), a protein complex downstream of PI3K-Akt pathway, is one of the players deregulated after ischemia and OGD. In addition, neuroprotective intervention either by estradiol or by specific AT2R agonists shows an important regulatory role for the mTORC1 activity, for instance regulating vascular endothelial growth factor (VEGF) levels. This evidence highlights the importance of understanding the role of mTORC1 in neuronal death/survival processes, as it could be a potential therapeutic target. This review summarizes the state-of-the-art of the complex kinase mTORC1 focusing in upstream and downstream pathways, their role in central nervous system and their relationship with autophagy, apoptosis and neuroprotection/neurodegeneration after ischemia/hypoxia

    Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus

    No full text
    Estrogens regulate a wide set of neuronal functions such as gene expression, survival and differentiation in a manner not very different from that exerted by neurotrophins or by growth factors. The best-studied hormonal action is the transcriptional activation mediated by estrogen receptors. However, the direct effects of estrogen on growth factor signaling have not been well clarified. The present data show that estradiol, in vivo, induces a transient activation of GSK3 in the adult female rat hippocampus, followed by a more sustained inhibition, as inferred from phosphorylation levels of Tau. Similar data was obtained from cultured hippocampal neurons when treated with the hormone. The transient activation was confirmed by direct measure of GSK3 kinase activity. In addition, our results show a novel complex of estrogen receptor α, GSK3, and β-catenin. The presence of the hormone removes β-catenin from this complex. There is a second complex, also affected by estradiol, in which Tau is associated with GSK3, β-catenin, and elements of the PI3 kinase complex. Considering the role of GSK3 in neurodegeneration, our data suggest that part of the neuroprotective effects of estrogen may be due to the control of GSK3. © 2004 Elsevier Inc. All rights reserved.This research was supported by grants from Spanish CICYT, MCYT (SAF 2002-00652) and the Commission of the European Communities, specific RTD program Quality of Life and Management of Living Resources, QLK6-CT-2000-00179 and by an institutional grant from Ramon Areces Foundation. Project 1115-05-11095 by COLCIENCIAS at University of Antioquia (to G.P.C-G.). G.P.C-G. is a postdoctoral fellow from Fundación Carolina, AECI, Spain.Peer Reviewe
    corecore